

The Effect of Ionizing Radiation on U⁶⁺ Phases

Presented by:
Satoshi Utsunomiya and Rodney C. Ewing
Geological Sciences, University of Michigan

October 19, 2005
Annual Meeting of Geological Society of America

Introduction

Effect of ballistic interaction in U⁶⁺ phases

boltwoodite, 1.0 MeV Kr²⁺, room temperature

Electron irradiation of U5+-minerals

Goal

To evaluate the stability of U⁶⁺-phases under ionizing radiation.

Materials

boltwoodite $K[(UO_2)(SiO_3OH)](H_2O)_{1.5}$

kasolite $Pb[(UO_2)(SiO_4)](H_2O)$

saléeite $Mg[(UO_2)(PO_4)]_2(H_2O)_{10}$

carnotite $K_2(UO_2)_2(V_2O_8)(H_2O)_3$

liebigite $Ca_2[(UO_2)(CO_3)_3](H_2O)_{11}$

schoepite $[(UO_2)_8O_2(OH)_{12}](H_2O)_{12}$

uranophane $Ca[(UO_2)(SiO_3OH)]_2(H_2O)_5$ sklodowskite $Mg[(UO_2)(SiO_3OH)]_2(H_2O)_6$

Utsunomiya et al. (2003) Am. Mineral.

Experimental Methods

- Electron irradiation (ionizing radiation) was performed using JEOL 2010F at EMAL of University of Michigan.
 - Structural transition was monitored in situ using selected area electron diffraction pattern (SAED).
 - > The transition in HRTEM was also recorded on video.
 - > Temperature: room temperature and 300 °C
 - \rightarrow e-flux = ~8-33 x 10¹⁷ (e⁻/cm²/sec),
- SRIM 2003 (The Stopping and Range of Ions in Matter) calculation (Ziegler et al., 2003)

SAED of transition during e-irradiation

e-flux = \sim 8-33 x 10¹⁷ (e-/cm²/sec), room temperature

SAED of transition during e-irradiation

uraninite nanocrystals start to form

HRTEM of transition on video

In situ observation for nanocrystallization in schoepite during electron irradiation at room temperature

Video: schoepite hrtem10

HRTEM image of nanocrystalline uraninite formed after ~13x10¹⁰ Gy of the electron fluence.

Comparison of the structures

uraninite

U-O: 0.1780 nm & 0.2280 nm

U-OH: 0.2420 nm

U-U: ~0.4 nm (0.3830-0.4570)

U-O: 0.2370 nm U-U: 0.3870 nm

Conclusions (1)

- During the irradiation, boltwoodite, saléeite, and carnotite became amorphous at doses of 1-4 x 10¹⁰ gray (Gy), while the amorphization dose (D_c) of kasolite, 50x10¹⁰ Gy, was about an order of magnitude higher than that of boltwoodite. This high D_c for kasolite is consistent with the hypothesis that the D_c increases as the mass of the inter-layer cation increases.
- Only amorphization, rather than chemical decomposition, occurred in boltwoodite, saléeite and carnotite, even at doses as high as 80x10¹⁰ Gy.
- In contrast, uraninite nanocrystallites began to form with a random orientation at ~43x10¹⁰ Gy in liebigite that had already become amorphous prior to irradiation in the vacuum of the TEM.

Conclusions (2)

- For schoepite, the D_c was only 0.51x10¹⁰ Gy, and randomly oriented uraninite nanocrystallites began to form at 7.8x10¹⁰ Gy, which is approximately the same as compared with the D_c of the other U⁶⁺-phases.
- All of these doses are higher than the predicted cumulative dose by the ionizing radiation in spent nuclear fuel (~10⁷-10⁸ Gy during the first 10²⁻³ years after discharge).
- The effect of electron irradiation during the ion irradiation experiments was negligible.

